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Abstract 

 

 The generalized four-element Riemann boundary value problems 

0)(,1||),()()()()()()()()(    ttfttdttcttbtta  

is investigated in the class of piecewise analytic functions. When 

0)()(  tbta , )()( tdtc   are satisfied, we discuss it’s noether theory, 

stability, and solvability theory, then the closed form of the solution of problem 

above can be established 

 

Keywords: Generalized four-element Riemann boundary value problems, 

Markushevich problem, Close solution 

 

1 Introduction 
 

Let L is a simple closed Lyapunov curve dividing the closed complex plane 

into the interior part D  and exterior part D , D0 . Find function )(z and  
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)(z analytic in D and D , respectively, satisfying the condition 

 Lttfttdttcttbtta   ),()()()()()()()()(          (1) 

imposed on their boundary values on the contour L .  

This problem is called generalized four-element Riemann boundary value 

problems [5]. And it should be noted that the problem in form (1) in case 

0)(,1)(  tbta  firstly was formulated in 1946 by A.I.Markushevich [6]. 

Many original works[1-4,7] have been devoted to the problem (1). And 

G.S.Litvinchuk [5] reviewed the survey of closely related results of problem (1), 

and then the noether theory, stability, and solvability theory were all mentioned.  

In this article we shall obtain the constructive algorithm for solution of the 

problem (1), and when the conditions 0)()(  tbta , )()( tdtc   are satisfied, 

the problem can be solved in a closed form. 

 

2 The solution of problem (1) in a close form 
 

Let the curve L  be the unit circle, i.e. }1|:|{  zzD , }1|:|{  zzD , 

and )(ta , )(tb , )(tc , )(td , )(tf  are given on L  functions of Holder class. 

When the conditions 0)()(  tbta , )()( tdtc   are satisfied, we shall solve 

the problem (1) under the condition 0)(  .  

 
2.1 Noetherity conditions, stable and degenerated properties 

In this section, we first discuss the noetherian, stable and degenerated case of 

problem (1) under the assumption. 

From conditions 0)()(  tbta , )()( tdtc  , then we have the inequality 

0)()()()()(  tdtbtctat  

According to reference [5], the problems (1) is said to be noetherian. 

Let ])()()()([)( tctbtdtatt  . Firstly, let’s introduce the solution of problem 

(1) under stable case or degenerated case 

 

Lemma[5] If one of the following conditions holds:  
1) 0|))(||)(|)(|)(||)((|  tdtctbta ,   (stable case) 

2)     |)(arg|)(arg,0|)(||)(|,0|)(||)(| LL tttbtatdtc   , 

(degenerated case) 

3)     |)(arg|)(arg,0|)(||)(|,0|)(||)(| LL tttdtctbta   ,    

(degenerated case) 

4)     |)(arg|)(arg,0|)(||)(|,0|)(||)(|
LL

tttdtctbta   .   

(degenerated case) 

Then the number l  of linearly independent solutions and the number p of 

linearly independent solvability conditions of the generalized four-element 

Riemann boundary value problems (1) for one pair of functions are given by 
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,0max(
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tl 


 ,   ))(arg
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L

tp 

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 Notice that, if we impose the conditions 0)()(  tbta , )()( tdtc  , the 

following identities can be directly verified 

   
LL tt )}({arg

2

1
1)}({arg

2

1






  

 
So according to the reference [5], the equality above means that the problem 

(1) under the conditions 0)()(  tbta , )()( tdtc   is not stable or degenerated. 

 

2.2 The solution of problem (1) 

Let’s take conjugates on both sides of problem (1) 

  Lttfttdttcttbtta   ,)()()()()()()()()(      (2) 

Then by (1) and (2), and the conditions 0)()(  tbta , )()( tdtc  , then 

we have 

  Lt
tdtc

tftf
t

tdtc

tdtc
t 




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
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  ,
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)()(
)(

)()(

)()(
)(        (3) 

If we denote
)()(

)()(
)(

tdtc

tdtc
tG




 ,

)()(

)()(
)(

tdtc

tftf
tg




  , then )()(),( LHtgtG  . 

And it implies that  

 

   










1)()()(

1)(

tgtgtG

tG
                              (4) 

 

1) Find function )(z  in 
D  

Denote  
L

tG )(arg
2

1


  . Obviously,  is an even number, called the 

index of problem (3). 

(1) Assume 02  m , the problem (3) under 0)(   has its general 

solution 
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where 
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1,...,2,1  mk . And )(),( 212 tt kk   , )(t  are the solutions of equation as follows  
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where )(0 zX   is a basic function, and it satisfies the boundary value condition 

  )(
)(

)( 00 tX
t

tGt
tX

m

m
                                  (8) 


~

 is a Fredholm integral equation  
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 (2) 02  m . In this case, the conditions of solvability of problem (3) 

under 0)(   are  
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mj ,...,2,1 , and )(t is a solution of the adjoint equation 0
~

 .  

If and only if they are fulfilled, the problem (3) has the unique solution as 

follows 
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2) Find function )(z  in 
D  

From (5), we have 
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Let
2

)()()()()(
)(

tfttdttc
tu




 
, and by the assumption 0)()(  tbta , 

then the problem (1) can be transferred to   

  Lttuttia   ),()}()(Re{              (13) 

 

 Obviously, only if )(tu is a real function, i.e. 

  0
2

)()()()()(
Im 

  tfttdttc 
         (14) 

the problem (13) is a Hilbert boundary value problem. Denote Lta ])([arg
1

1


  , 

thus we have the following 

 (1) Assume 01  , the problem (13) has its general solution 
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where )(zX  is the canonical function of problem (13), and  
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if and only if 

  2/2/110 1111
...,,,  CCCCCC                     (17) 

 

where 
1

,...,, 10 CCC  are arbitrary constants. 

(2) If 21  , and the following conditions are satisfied 
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the problem (13) is solvable and has a unique solution 
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Thus, we get 
Theorem Consider the following boundary value problem (1) under the condition 

0)(  . Let 
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supplementary conditions 0)()(  tbta , )()( tdtc   are satisfied, the 

sufficient and necessary conditions for solvability of the boundary value problem 

(1) are 

 

① If 0  and 01  , then it has the solutions (5),(15) when and only when 

(14),(17) are fulfilled. 

② If 0  and 21  , then it has the solutions (5),(19)when and only when 

(14),(18)are fulfilled. 

③ If 0  and 01  , then it has the solutions (11),(15)when and only when 

(10),(14),(17) are fulfilled. 

④ If 0  and 21  , then it has the solutions (11),(19) when and only 

when (10),(14),(18) are fulfilled. 

 

Example. Let }1|:|{  zzD , }1|:|{  zzD and }1|:|{  ttL . It is required 

to find functions )(z and )(z analytic in D and D , respectively, which 

vanishing on the infinity and satisfying on L  the following boundary condition 
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Solution. Here
t

ta
1

)(  , ttb )( , 2)( ttc  , 3
1
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2
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t
td ,

t
ttf

1
4)(  , then we 

have that 0)()(  tbta , 03)()(  tdtc . So from the theorem above, we 

get in this case  

0 , 21  , it
t

tu )
1

()(   

Then the following functions will be the solution of the problem (20) 

z
z

1
)(   

czzz  22)(  

where c is arbitrary real constants. 

 

3 Some special cases 
 

1) If 0)()(  tbta , the problem (1) can be written in the form 

Lttfttdttc   ,0)()()()()(   

 Then it easily to see the problem can be written as follows  

  )(Re)(])()([Re tfttdtc    

 It is a Riemann-Hilbert outer problem, and then the closed form solution of 

problem (1) is obtained.  
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2) Similarly, if 0)()(  tdtc , the problem (1) can be written as 

Lttfttbtta   ),()()()()(   

 Then it easily to see the problem can be written as follows  

  Lttfttdtc   ),(Re)(])()([Re   

 It is a Riemann-Hilbert inner problem, and then the closed form solution of 

problem (1) is obtained.  
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