师资队伍
首页  >  师资队伍  >  正文
教授/研究员
尹宏鹏


尹宏鹏,博士、教授/博导,重庆大学自动化学院党委书记,国家重点研发项目首席科学家,重庆市高层次引进人才,重庆英才青年拔尖人才,重庆市课程师政教学名师,重庆市控制科学与工程学科学术带头人。

教育背景

1999/9–2003/6,重庆大学,通信工程,学士

2004/9–2009/6,重庆大学,控制理论与控制工程,博士

2008/1–2009/1,guelph大学,控制理论与控制工程,联合培养博士

专业领域

人工智能、大数据

主要研究方向

模式识别与智能系统、计算机视觉与智能视频分析、故障诊断与寿命预测

主讲课程

模式识别原理、信息安全概论(双语)、人工智能原理等

学术兼职和荣誉

先后担任中国人工智能学会智能空天系统专业委员会副秘书长、智能服务专委会委员,中国自动化学会教育工作委员会委员、技术过程的故障诊断与安全性专委会委员,冶金智能装备重庆市重点实验室学术委员会委员等多个学术任职。

科研情况简介

长期从事人工智能基础理论及应用研究,先后主持国家重点研发项目、国自然面上项目、青年基金、中国博士后基金、重庆市基础科学与前沿研究技术专项重点项目、重庆市自然科学基金面上项目、重点项目、重庆市博士后特别资助、重庆市教改项目等20多项国家及省部级高水平的教改和科研项目,参与完成多个国家科技攻关项目、国家科技重大专项配套装备等实际工程类项目。以第一作者或通信作者身份发表60余篇SCI收录论文,其中包含多篇ESI高被引论文,单篇论文最高引用600 余次,被评为Information Fusion、IEEE Transactions on Industrial Informatics等多个期刊杰出审稿人,以第一发明人授权发明专利18项。先后获重庆市科技进步一等奖、中国仪器仪表学会科技进步一等奖、中国机械工业科学技术奖一等奖、重庆市科技进步二等奖、中国自动化学会技术发明二等奖各一项。

论文(选录)

[1]Han Zhou,Hongpeng Yin*, et al. Industrial fault diagnosis with incremental learning capability under varying sensory data,IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, DOI: 10.1109/TSMC.2024.3500019.

[2]Li Cai,Hongpeng Yin*,et al. A multiattribute learning model for zero-sample mechanical fault diagnosis,IEEE Transactions on Industrial Informatics, 20 (7) :9633-9643, 2024.

[3]DanDan Zhao,Hongpeng Yn*, et al. A zero-sample fault diagnosis method based on transfer learning,IEEE Transactions on Industrial Informatics,20 (10):11542-11552, 2024.

[4]Li Cai,Hongpeng Yin*,et al. An update-strategy-based Gaussian process regression method for aeroengines fault prediction,IEEE Transactions on Industrial Informatics, 20(2): 1941-1951, 2023.

[5]Han Zhou,Hongpeng Yin*, et al.Incremental learning and conditional drift adaptation for nonstationary industrial process fault diagnosis,IEEE Transactions on Industrial Informatics, 19(14):5935-5944, 2023.

[6]Li Cai,Hongpeng Yin*, et al. A relevant variable selection and SVDD-based fault detection method for process monitoring,IEEE Transactions on Automation Science and Engineering, 20(4): 2855-2865, 2022.

[7]Li Cai,Hongpeng Yin*, Jingdong Lin. A unified framework with incremental learning capacity for industrial fault detection and classification, IEEE Transactions on Automation Science and Engineering, 2024.

[8]Li Cai,Hongpeng Yin*, et al. Federated generalized zero-sample industrial fault diagnosis across multisource domains,IEEE Internet of Things Journal,11(23), pp.38895-38906, 2024.

[9]Chuan Sun,Hongpeng Yin*, et al. A novel rolling bearing vibration impulsive signals detection approach based on dictionary learning,IEEE-CAA Journal of Automatica Sinica, 8(6): 1188-1198, 2021.

[10]Li Cai, XuanHong Deng,Hongpeng Yin*,et al. Generalized zero-sample industrial fault diagnosis with domain bias,Reliability Engineering & System Safety,2024. DOI: 10.1016/j.ress.2024.110571.

[11]JingdongLin, Zheng Lin,Hongpeng Yin*.A Novel Product Remaining Useful Life Prediction Approach Considering Fault Effects.IEEE-CAA Journal of Automatica Sinica,8(11): 1762-1773, 2021.

[12]Han Zhou,Hongpeng Yin*, Yi Chai.Multi-grained mode partition and robust fault diagnosis for multimode industrial processes.Reliability Engineering & System Safety, 2023.

[13]Jiajun Chen,Hongpeng Yin*, et al.Long-Tailed Defects Classification Based on Probabilistic Aggregation Network for Light-Emitting Diode Packaging Process.IEEE Transactions on Industrial Informatics,20(10):pp.12136-12146, 2024.

[14]Guobo Liao,Hongpeng Yin*, et al.Remaining useful life prediction for multi-phase deteriorating process based on Wiener process,Reliability Engineering & System Safety, 2021.

[15]Yanxia Li,Hongpeng Yin*, et al.A novel dimension reduction and dictionary learning framework for high-dimensional data classification,Pattern Recognition. 2021.

[16]Jie Ma, Li Cai, Guobo Liao,Hongpeng Yin*, et al. A multi-phase Wiener process-based degradation model with imperfect maintenance activities,Reliability Engineering & System Safety, 232, 2023

联系方式:

yinhongpeng@gmail.com

重庆市沙坪坝区重庆大学虎溪校区信息技术科研楼A自动化学院